UAV Ground Scanning System: Human Detection
with Deep Learning

Xiaxin Shen
Computer and Information Technology
Purdue University
West Lafayette, IN, USA
shen452 @purdue.edu

Yeji Gong
Software Engineering
Chung-Ang University

Seoul, In, Korea, South
yejigong00 @ gmail.com

Eric T. Matson
Computer and Information Technology
Purdue University
West Lafayette, IN, USA
ematson @purdue.edu

Abstract—As technology advances, people and their govern-
ments will find more practical uses for UAV ground scanning
system. As surveillance cameras become more obtainable for
the average person, several drawbacks are uncovered for these
consumer-grade products. Drawbacks such as lack of night vision
(i.e. infrared imaging) and the lack of mobility. A raspberry pi,
GPS sensor, and infrared imaging camera are utilize to develop a
mobile, automatic camera in this paper. Once the camera detects
the shape of a human being, it will take an infrared image
of the person and utilize the GPS sensor to provide the exact
location of the culprit. This paper presents a deep learning-based
convolutional neural network (CNN) to implement the object
detection for images taken from a high-altitude downward angle.
The implementation of the hardware and sofware are described
in this paper, and the infrared dataset made by the research
team is introduced as well, which is open-source and ready to
be used for any related machine learning tasks. Both YOLO and
SSD algorithms are utilized in this research, and weights from
pre-trained models including YOLOv3 and SSD mobile net are
used in the phase of transfer learning. The system is expected to
be deployed and push warning messages with GPS information
when human are detected when searching or rescuing events are
operated.

Index Terms—UAV, YOLO, SSD, computer vision, convolu-
tional neural network, deep learning, GPS sensor, embedded
system development, surveillance, infrared imaging.

I. INTRODUCTION

After examined more than 840,000 police incidents from
2017 across 10 major American cities, a report made by
TheSleepJudge [1] concludes that felonies like DWI/DUI,
murder and non-negligent manslaughter, rape/sexual assault,
robbery, aggravated assault, motor vehicle theft occurred more

Haeun Ko
Industrial Security
Chung-Ang University
Seoul, In, Korea, South
hekoh99 @naver.com

Hyonjun Kang
Software Engineering
Chung-Ang University

Seoul, In, Korea, South
hyonjun.kang.00@ gmail.com

Taeuk Gwak
Computer Engineering
Chung-Ang University
Seoul, In, Korea, South
gwak2837 @kakao.com

Jihyeon Noh
Software Engineering
Chung-Ang University

Seoul, In, Korea, South
jihyeon6754 @ gmail.com

Minji Lee
Computer and Information Technology
Purdue University
West Lafayette, IN, USA
lee3450 @purdue.edu

likely during night time 7 pm — 6:59 am than daytime 7 am
— 6:59 pm, while burglaries happen equally likely. Tracking
people by the UAV during the night can help increase the rate
of the solved criminal cases and decrease the criminal rate to
a remarkable extent. Secure surveillance systems established
based on the UAV can help recognize objects which are
moving or static and show necessary data like the information
from Global Positioning System (GPS).

The purpose of the project is to build a system one UAV that
will use infrared camera to detect humans on the ground and
track them using GPS location. The main use of the application
would be in the area of security; as a potential anti-terrorism
application that could find and return the GPS location of
moving people during the night. To implement this, cameras
that can recognize human heads need to be deployed on the
UAV with motion detection and low battery cost as well as
long battery life.

There are previous research done in the field of Un-
manned Aerial Vehicles (UAVs) with utilizing object detection.
William Andrew. [2] proposed three deep convolutional neural
network architectures and applied them to the UAV navigation.
The species detector is created based on YOLOV2. This system
is applied in the scene of individual animal identification.
MohaimenianPour and Vaughan [3] presented the UAV-based
simultaneous detection of hands and faces including both
RGB and gray-scale images. Kouris, Kyrkou and Bouga-
nis. [4] addressed the challenge of deployment of region-
based object detection with aerial imagery. Kannadaguli and
Prashanth [5] built a huamn detection system with the deep

learning approach You Only Look Once (YOLO) v4 [6]. Both
thermal imaging and videos were used in their applications.
Instead of using traditional semantic segmentation method,
their work used the proposed single shot detection. Wong et
al. [7] conducted experiments several tiny object detection
models designed for embedded devices, including tiny SSD
and tiny YOLO. They achieved an mAP of 61.3% on VOC
2007 dataset, which is higher than tiny YOLO. With this
achievement, the model size if tiny SSD is 2.3 MB, which
is around 26 times smaller than tiny YOLO. Das et al. [§]
utilized faster R-CNN SSD, YOLO to do the object detection
task on a UAV which was customized with stabilized flight.

The deep convolutional neural networks (CNN) can be
used to recognize objects. The Convolutional Neural Network
(CNN) [9] is commonly used at the field of computer vision
and pattern recognition. In this project, Convolutional Neural
Network is used to do object detection. The key point for
utilizing it is to compress large data such as images. The CNN
include convolutional layers, pooling layers and dense layers.
This phase is supervised learning with images and labels. The
labels include the class name, which is represented in the index
in the output, and four numbers for describing the box around
the object including X_CENTER, Y_CENTER, WIDTH and
HEIGHT. There are several different networks established
based on CNN. For the purpose of image classification, LeNet
[10], AlexNet [11], VGG [12], GoogLeNet [13] are created.
For detecting the objects, RCNN [14], Fast RCNN [15],
Faster RCNN [16], YOLO [17] , SSD [18] are trained and
established. Considering the superb speed of the YOLO and
SSD, the pre-trained model of YOLO and SSD are used as
the base of transfer learning in this project. The deep transfer
learning [19] can help solve the problem of insufficient training
data. In this way, independent training data and identically
distributed test data are not mandatory.

II. ENVIRONMENT SETTING
A. Raspberry Pi Setting

The application is currently using a raspberry pi model 3B
[20] running the 32-bit Raspberry Pi OS. It has VNC setup
on it to allow for remote connection. For use on an UAYV, the
Raspberry Pi is secured in a weather proof case to keep it
protected from the elements.

B. GPS Sensor Setting

The GPS sensor that is utilized for this application is the
Adafruit Ultimate GPS with gpsd [21]. It is connected to the
Raspberry Pi using a USB to TTL serial cable. The GPS is
setup using python and outputs the longitude, latitude and
altitude of the current location of the UAV. Although the GPS
sensor is always active, it only transmits a location back to the
user when a human is detected by the infrared camera sensor.

C. Camera Sensor Setting

The original camera that was being used was the raspberry
pi NOIR camera [22]. It was setup using python commands to
take pictures every second until 50 pictures have been taken.

Fig. 1. Picture of Raspberry Pi Model 3B

Fig. 2. GPS Output

Upon testing the NOIR camera, it was found that the camera
required the use of a IR illuminator to be able to detect bodies
in the dark. Therefore, our team needed to find a way to work
around this for our project. The reason for this was because
the main application of the UAV is during nighttime and the
NOIR camera is unable to detect bodies in the dark.

Fig. 3. Pi NoIR Camera V2

Also it should be prepared infrared filter that can be installed
on the DSLR camera in order to take infrared photographs,
because it must get permission from authorities to take pictures
in the air with drones in South Korea. The infrared filter has
the effect of blocking electromagnetic waves below 720nm
including visible light, allowing us to take infrared photos.

D. Code Environment Setting

Libraries including ipython 7.16.1, jupyter-http-over-ws
0.0.8, Keras 2.3.1, matplotlib 3.3.4, notebook 6.3.0, numpy
1.19.5, opencv-python 4.5.1.48, pandas 1.1.5, Pillow 8.2.0,

Enhance Your In
Protect Your Le

DIGITAL

Fig. 4. HOYA Infrared filter 67mm

TensorFlow 1.15 are used in this project. Python 3.6 is used
for establishing the model.

III. DATASET

A. Data Collecting

The dataset were collected by photographing the ground
on the rooftop or the high places of the buildings. The
dataset were taken in The Hyundai Seoul Yeouido, Chung-Ang
University, Nodeul Island, and Times Square Yeongdeungpo,
South Korea. Also, there are two types of infrared photographs
and normal photographs, and examples are Figure 5 and figure
6. The number of pictures taken at each location is as follows.

- Nodeul Island, Chung-Ang University: 159

- The Hyundai Seoul: 95

- Infrared photos in daytime: 114

- Infrared photos in twilight: 74

I

S gl

Fig. 5. Picture at Korea’s Yeongdeungpo Times Square

Fig. 6. Infrared picture at Korea’s Nodeul Island

B. Image Preprocessing

o Labelling
Both images created by Siyah [23] and the our own created
dataset were used. The model needs the images and the labels.
Annotation files, include two types: one is in YOLO format
and the other is in VOC format.

The study was conducted as follows: First, we used the
labeling tool to create an image in YOLO format and then
convert it to VOC format. YOLO and VOC format are respec-
tively .txt and .xml format.

GO TG T UG GO T GILIP Y

4 train.py 000.txt
7 voc_anno > 001.txt
I voc_anno.zip 002.txt
~ yolo_anno > 003.txt
@ @ 000.txt

0 0.112028 0.721108 0.101415 0.107901
9 0.047170 0.199292 0.094340 0.146816
0 0.464623 0.077978 0.061321 0.155955
0 0.414505 0.862618 0.088443 0.118514
0 0.507075 0.764446 0.080189 0.099057

Fig. 7. YOLO annotation

Labeling images was done with Labelimg [24], which is
a graphical image annotation tool developed. In this phase,
the person object is identified in the image with its bounding
box (bbox) information which includes 4 parameters used for
coordinating as well as the class name, namely person.

o Data Cleaning
The naming of Aerial Semantic Segmentation Drone Dataset
[23] is not consistent. The program is developed to analyze
which number lacks, and saved them to the csv file. Based
on this result, files are generated with empty content to make
matching exists for every image and its annotation files.

There are some errors made when annotating images man-
ually, like wrong label index written in the annotation files,
and the lack of files which does not include any object. The

Lo TG UL GO TGO LIy T

4 train.py % 000.xml fold
~ voc_anno > % 001.xml file
® @ 000.xml

<annotation>

<folder>yolo_anno</folder>
[<filename>000. jpg</filename>
[<path>/Users/allison.xiaxin.shen/Documents/Project/UAV_CV.
<source>
<database>Unknown</database>
(</source>
<size>
<width>6000</width>
<height>4000</height>
<depth>3</depth>
(</size>
(<segmented>0</segmented>
| <object>
ER <name>person</name>
{ <pose>Unspecified</pose>
<truncated>@</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>367</xmin>
<ymin>2668</ymin>
<xmax>976</xmax>
<ymax>3100</ymax>
</bndbox>
</object>

Fig. 8. VOC annotation

necessary information from images which does not include
any object will be set as missing values, also referred to as
NA, in pandas after converting them to CSV files. All those
rows including NA need to be dropped before the next step:
converting to TFRecords.

[#ARAHHAARHHHAARAS] 84% No person in this image!
| HAHHHAHAAAHA A] 85% No person in this image!
[##AAAAA A A A A A A #--] 88% No person in this image!
[###HHHAA AR A#AAH#H#-~] 89% No person in this image!
[###HHAAARHA AR H####-] 93% No person in this image!

[###HHHAAR A AR H## -] 93% No person in this image!
| ##HARHHHAHHHHHAH#### -] 93% No person in this image!
[###HHHAARHA AR HH##-] 95% No person in this image!
[###HHHAARHAAHAAH#H## -] 96% No person in this image!
[###HHHAARHH AR HH###-] 96% No person in this image!
[###HHHAA R A AR A#H##] 98% No person in this image!

[#AHRHHBHAAHAAHARAAAA] 100%
Successfully converted xml to csv.

filename width height class xmin ymin Xmax ymax
0 000.3jpg 6000 4000 person 367.0 2668.0 976.0 3100.0
1 000.3jpg 6000 4000 person 0.0 503.0 566.0 1090.0
2 000.jpg 6000 4000 person 2603.0 0.0 2971.0 623.0
3 000.3jpg 6000 4000 person 2221.0 3213.0 2752.0 3687.0
4 000.jpg 6000 4000 person 2801.0 2859.0 3283.0 3255.0
5 001.jpg 6000 4000 person 3219.0 354.0 3459.0 630.0
6 001.jpg 6000 4000 person 4308.0 2321.0 4613.0 2767.0
7 001.jpg 6000 4000 person 2681.0 2527.0 2985.0 2845.0
8 001.3jpg 6000 4000 person 955.0 2272.0 1507.0 2732.0
9 001.jpg 6000 4000 person 2179.0 3213.0 2518.0 3538.0
10 001.jpg 6000 4000 person 2462.0 3411.0 2794.0 3800.0

Fig. 9. Handling NA Cases

Critical information including filename, class, width, height,
Xmin, Xmax, ymin, and ymax are extracted from .xml files and
stored in csv files. The reason of converting the data format
from VOC xml files to CSV (Comma-Separated Values) files
is that pandas [25] works friendly with CSV files. Figure
10 shows an example how CSV files are organized. Two
chunks of data: train and test are split from the original
dataset and saved to CSV files. Based on the data in CSV

format, it is easier to work with in the phase of generating
TFRecords, which can combine the byte string of the image
and image label together, with TensorFlow Object Detection
API’s dataset_util library.

Fig. 10. Saving as CSV files

o Images Resizing
After labeling images, resizing was needed. The figure 11
shows that the image and the bounding box are resized
with the same scale. The aerial drone dataset [23] is resized
from 6000x4000 to 320x320 considering the YOLO and SSD
network downsamples up to 32 inputs and the limitation of
memory.

0

100

150

200

250

300

200

250 300

Fig. 11. Resizing Images

The library cv2 is used to resize images, the same scale
needs to be used to resize the bounding box based on the new
height and width of images. Figure 12 shows how bounding
boxes are resized.

Since the size of the our own created dataset is also
inconsistent, they was needed to be resized too. In this phase,
PIL(Python Imaging Library) was used. By resizing function
in the Image module, the dataset was resized into 320X320
successfully.

def resize images boundingbox(pathOriginalImages, newSize, pathResize,df):
tempList = []
for filename in glob.glob(f"{pathOriginalImages}/*.jpg"):
basename = os.path.basename (filename)
image_name = basename
print (£"<<<<<<<<<resizing {image_name}>>>>>>>>")
image = cv2.imread(filename)
scale_x = newSize[0] / image.shape[l] |

scale_y = newSize[1] / image.shape[0]
image = cv2.resize(image, (newSize[0], newSize[1]))

cv2.imwrite(f"{pathResize}/{image name}", image) #save the resized images

allLinesSameImage = df[df.filename == image_name]
for i, row in allLinesSameImage.iterrows():
new_width, new_height = newSize[0], newSize[1]

ymin, xmin, ymax, xmax = row['ymin'], row['xmin'], row['ymax'], row['xmax']

new_xmin = int(np.round(float(xmin) * scale_x))

scale_y))

new_ymin = int(np.round(float (ymin)
new_xmax = scale_x))

*

*
int(np.round(£loat(xmax) *
*

new_ymax = int(np.round(float(ymax) * scale_y))
value = (image_name,new_width,new_height,row['class'],new_xmin,new_ymin,new_xmax,new_ymax)
tempList.append(value)

column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']

df_resize = pd.DataFrame(tempList, columns=column_name)
return df_resize

Fig. 12. Resizing Bounding Boxes

C. TFRecord Conversion

TFRecord is used for the dataset. Before converting the
dataset to TFRecord, the original dataset need to be split
to two parts: train_labels.csv and test_labels.csv as figure 13
shows. The dataset was shuffled and divided into train part
and test part. After dividing, the each dataset was converted
to TFRecord.

total len: 347
len of train (# images): 277
len of test (# images): 70

len of train (#rows): 1002

filename width height class xmin ymin xmax ymax
0 000.jpg 320 320 person 20 213 52 248
1 000.jpg 320 320 person 0 40 30 87
2 000.jpg 320 320 person 139 0 158 50
3 000.jpg 320 320 person 118 257 147 295
4 000.jpg 320 320 person 149 229 175 260
len of test (#rows): 256

filename width height class xmin ymin xmax ymax
21 003.3jpg 320 320 person 58 35 86 102
22 003.jpg 320 320 person 100 121 136 172
25 005.jpg 320 320 person 197 717 206 104
26 005.jpg 320 320 person 184 170 195 187
27 005.jpg 320 320 person 189 164 200 181

Fig. 13. Train and Test Splitting

D. Preparement

e Test in dark
To test the IR quality of our camera, we tested taking pictures
in a dark room as opposed to testing outside. We did this,
not only because of time, but because we wanted to see
how good the quality was when provided minimal lighting.
Testing outside would result in a lot of lighting from secondary
sources, such as the moon or other buildings.

E. Determination of the field of view

o 90 degrees
The camera will be attached to the UAV at a 45 degree angle
between the X-axis and Y-axis. This will, ideally, give the
camera the best field of view for object detection, providing
as close to 90 degrees of view as possible.

Fig. 14. Theoretical Diagram

FE. Color of clothes for testers

When it comes to testing the camera it was recommended
to have as much skin showing on the person. This is to enable
the most amount of their body heat to be shown on the sensor
without anything blocking heat. Therefore for testing, we had
people wear t-shirts and shorts if applicable; otherwise, they
had pants on with a t-shirt.

IV. OBJECT DETECTION AND TRACKING

The goal for the Infrared Camera is to be able to detect a
human being while in the dark, automatically take a picture
once a human is detected, then send the picture to a database
for further review. To do this, an algorithm called YOLO will
be implemented to the camera for object detection.

A. YOLO

In order for YOLO to be able to detect a human being, it
must first be taught what to look for. To do this, a database
of 500 aerial photographs were manually tagged using the
program Make Sense, placing extra emphasis on human heads.
Make Sense tagged all humans photographed, then exported
the database to a format that YOLO can utilize to detect
humans. Due to many pictures of humans not entirely in
the photograph, only humans with their heads showing were
tagged with Make Sense. This was done to ensure the camera
could detect a human within the entirety of its field of view
and to negate the amount of false positives generated.

B. SSD

TensorFlow Lite [26] at raspberry pi was set and the pre-
trained model with the algorithm SSD (Single Shot MultiBox

Detector) was deployed. [18] to do object detection with
the infrared camera. The figure 15 shows when a person is
recognized successfully, both screen and terminal will show
the label name “person”, with a confidence score. The model
is a pre-trained model established based on Tensorflow Lite
[26] which is commonly used for mobile and IoT devices. The
model created with the SSD algorithm was pretrained with the
COCO dataset [27].

Fig. 15. Object Detection with SSD

C. Pinging the GPS

Once the Pi NoIR Camera detects a human and takes an
automatic picture, the images will be tagged with the exact
GPS location the picture was taken. The image will then be
sent to the host computer and stored for further review. This is
better than having the pictures stored on the device itself due
to the possibility of losing the UAV and the contents attached
to it.

Fig. 16. Example of Make Sense Human Detection

V. TRAINING PHASE

For training the model, YOLOv3’s pre-trained weights and
pipeline are used with the setting of batch size 8 and epochs
100. TensorFlow 2.x was used for running YOLO based

model. figure 17 shows that the loss value goes down from
179 to 0.0778.

yolo_output_0_loss: 0.4683
- yolo_output_0_loss: 179.1

yolo_output_0_loss: 0.4495
yolo_output_0_loss: 1.5583
yolo_output_0_loss: 0.2628

yolo_output_0_loss: 0.3643
yolo_output_0_loss: 1.0584

yolo_output_0_loss: 0.1379
yolo_output_0_loss: 0.4113
yolo_output_0_loss: 1.1607

yolo_output_0_loss: 0.4790 yolo_output_0_loss: 0.1242
yolo_output_0_loss: 1.0606

=

yolo_output_0_loss: 0.1951
yolo_output_0_loss: 0.8919 yolo_output_0_loss: 0.1384

yolo_output_0_loss: 0.2326
yolo_output_0_loss: 0.7584

yolo_output_0_loss: 0.0879

yolo_output_0_loss: 0.1825
yolo_output_0_loss: 0.5576

yolo_output_0_loss: 0.0778

lo_output_0_loss: 0.1525
yolo_output_0_loss: 0.4462 yolo outpur.0_loss

Fig. 17. YOLO v3: Loss Values

Further, SSD mobile net is also utilized. the total steps
were set to 100000, and the evaluation steps were set to 50.
TensorFlow 1.x was used for running SSD based model. The
figure 18 shows that the loss value is converging as the steps

g0 up.

By comparing the results, the YOLO’s curve is more stably
decreasing than SSD. More training results will be updated in
future work.

loss_T

75
6.5
55
45]

35

0 5k 10k 18k 20k 25k 30k 35k

Fig. 18. SSD Mobile Net: Loss Curve

VI. WARNING SYSTEM BUILT WITH GPS INFORMING

The model is created based on the pre-trained files with
weights provided by YOLO. The model is first defined based
on the structure shown in the figure 19. After creating the
model with this structure, the weights from YOLO pre-trained
files are loaded to the model. Then, the model is saved as a
.h5 file.

As the figure 20 shows, the program can recognize objects
like the person, including the probability of this class. The
logic of the system is reading the result from the model,
converting the label to the human-readable version, which
can be seen as a decoding process, and triggering the GPS
informing system when the label matches with “’person”.

nodel() :
Input (st

conv_block(x,

_conv_block(x,

, ‘bnorm': True, 'lea
, ‘bnorm': True, 'lea

_conv_block(x, , 'bnorm’

, ‘bnorm'
, ‘bnorm'

Fig. 19. Model Structure

person 83.38873982429504
Person is recognized, show the GPS info
person 63.007354736328125

Person is recognized, show the GPS info
skateboard 75.75014233589172
figName: 000.Jjpg

[(1, 13, 13, 255), (1, 26, 26, 255),

(1, 52, 52, 255)]

0

500

1000 €

1500

2000

2500 &

3000

3500

1000 2000

Fig. 20. Warning System

VII. CHALLENGES
A. Data preprocessing

When working with TensorFlow Object Detection API, the
readme (tutorial) file provided at Github is out of date, so there
are some Tensorflow version problems between TF1 and TF2,
which was fixed by modifying the code with specifying the
version with “import tensorflow.compat.vl as tf”.

Another challenge occurred when drawing the bounding
box. Multiple labels were drawn on one image and success-
fully drawn using PIL and cv2. As pyplots are not close
properly, redundant labels are drawn at images densely after
the whole iterations. After closing it properly, this problem
was solved.

VIII. CONCLUSION

In conclusion, we presented a novel human detection
methodology based on deep convolutional neural network
with UAV imagery. Our approach combines the deep learning
models with the IoT devices, such as the raspberry pi which

had the GPS sensor and the camera sensor plugged into it.
Our project also considered the occasion of tracking objects
with night vision, so the infrared are configured and tested in
our project. An initial system which implements warning built
with GPS informing triggered by the specific result from the
model of object detection.

Further, both daytime and night infrared imaging dataset
taken from a high-altitude downward angle are created. Train-
ing with weights of YOLO v3 and SSD mobile net was done
with ADH dataset. More training on our own dataset need to
be done in future work, and the model needs to be converted
to the TensorFlow Lite version which is compatible with
Raspberry Pi’s 32 bit operating system. After the deployment,
a demo video is expected to be recorded.

REFERENCES

[1] “Crimes that happen while you sleep,” Nov 2020. [Online]. Available:
https://www.thesleepjudge.com/crimes-that-happen-while-you-sleep/

[2] W. Andrew, C. Greatwood, and T. Burghardt, “Aerial animal bio-
metrics: Individual friesian cattle recovery and visual identification
via an autonomous uav with onboard deep inference,” arXiv preprint
arXiv:1907.05310, 2019.

[3] S. MohaimenianPour and R. Vaughan, “Hands and faces, fast: mono-
camera user detection robust enough to directly control a uav in flight,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2018, pp. 5224-5231.

[4] A. Kouris, C. Kyrkou, and C.-S. Bouganis, “Informed region selection
for efficient uav-based object detectors: altitude-aware vehicle detection
with cycar dataset,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2019, pp. 51-58.

[5] P. Kannadaguli, “Yolo v4 based human detection system using aerial
thermal imaging for uav based surveillance applications,” in 2020
International Conference on Decision Aid Sciences and Application
(DASA). IEEE, 2020, pp. 1213-1219.

[6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[71 A. Wong, M. J. Shafiee, F. Li, and B. Chwyl, “Tiny SSD: A tiny single-
shot detection deep convolutional neural network for real-time embedded
object detection,” Proceedings - 2018 15th Conference on Computer and
Robot Vision, CRV 2018, pp. 95-101, 2018.

[8] L. B. Das, A. Lijiya, G. Jagadanand, A. Aadith, S. Gautham, V. Mo-
han, S. Reuben, and G. George, “Human target search and detection
using autonomous uav and deep learning,” in 2020 IEEE International
Conference on Industry 4.0, Artificial Intelligence, and Communications
Technology (IAICT). 1EEE, 2020, pp. 55-61.

[9] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET). leee, 2017, pp. 1-6.

[10] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters andj 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[12] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

[13] Z. Zhong, L. Jin, and Z. Xie, “High performance offline handwritten
chinese character recognition using googlenet and directional feature
maps,” in 2015 13th International Conference on Document Analysis
and Recognition (ICDAR). 1EEE, 2015, pp. 846-850.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and segmentation,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38,
no. 1, pp. 142-158, 2015.

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” arXiv preprint
arXiv:1506.01497, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21-37.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in International conference on artificial neural
networks. Springer, 2018, pp. 270-279.

“Raspberry pi 3 model b,” last accessed 30 March 2021.
[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-
3-model-b/

“Adafruit ultimate gps breakout,” last accessed 30 March 2021.
[Online]. Available: https://www.adafruit.com/product/746

“Pi noir camera v2,” last accessed 30 March 2021. [Online]. Available:
https://www.raspberrypi.org/products/pi-noir-camera-v2/

“Aerial semantic segmentation drone dataset,” last accessed 8 May
2021. [Online]. Available: http://dronedataset.icg.tugraz.at/
“tzutalin/labellmg: Labellmg is a graphical image annotation tool
and label object bounding boxes in images.” [Online]. Available:
https://github.com/tzutalin/labellmg

W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for high performance and scientific
computing, vol. 14, no. 9, pp. 1-9, 2011.

L. Shuangfeng, “Tensorflow lite: On-device machine learning frame-
work,” Journal of Computer Research and Development, vol. 57, no. 9,
p. 1839, 2020.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

